OR

- i) State and prove Binomial theorem. B ii) What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x-3y)^{25}$?
- i) Solve the recurrence relation $a_k = 3a_{k-1}$ for k = 1,2,3 ... and 23. A the initial condition $a_0 = 2$.

ii) Use generating functions to show that

 $\sum_{k=0}^{n} C(n,k)^2 = C(2n,n)$ whenever n is a positive integer. OR

- i) Find the generating functions for $(1+x)^{-n}$ and $(1-x)^{-n}$, where B n is a positive integer using the extended Binomial theorem. ii) Using generating functions to find an explicit formula for a_n where $a_n = 8a_{n-1} + 10^{n-1}$ which satisfies the recurrence relation and the initial condition $a_1 = 9$.
- Use k maps to minimize the sum of the products expansion 24. A i) $xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$ ii) $x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$ iii) $xy\overline{z} + x\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$

OR

B Use the Quine McCluskey method to simplify the sum - of products expansion

 $wxy\overline{z} + w\overline{x}yz + w\overline{x}y\overline{z} + \overline{w}xyz + \overline{w}x\overline{y}z + \overline{w}\overline{x}yz$

25. A Find a regular expression that specifies each of these sets: i) The set of bit strings with even length.

> ii) The set of bit strings ending with a 0 and not containing 8 i) Use the insertion som to but the elements of 11

- iii) The set of bit strings containing an odd number of 0's $x \in +(1+x) = (x + 1) \log (x + 1) + 3x$

OR

Show that the set $\{0^n 1^n / n = 0, 1, 2 \dots\}$ made up of all strings consisting of a block of 0's followed by a block of an equal number of 1's is not regular.

Four Pages S. No. 70615

Reg. No.

END SEMESTER EXAMINATION NOV/DEC-2023

First Semester

M.Sc MATHEMATICS

ELECTIVE - II DISCRETE MATHEMATICS

Time: Three Hours

{1,2,5,6} is

Maximum: 75 marks

SECTION A $-(15 \times 1 = 15 \text{ marks})$ **ANSWER ALL QUESTIONS**

1.	Α	is a declarative	sentence	that is	either	true o	r false
	but not bot	h					

A	Statement	B	Logic	
---	-----------	---	-------	--

D Proposition C Inference

2. The steps of an algorithm must be defined precisely, it is called

- A Finiteness Effectiveness B Definiteness **D** Generality C
- 3. The big O symbol is sometimes called a
 - A Paul Symbol B Landau Symbol
 - Donald Symbol D Knuth Symbol C
- 4. How many different bit strings of length seven are there?

	A 128	B 64	
	C 32	DO	
5.	If n be a non-nega	tive integer, then $\sum_{k=0}^{n} 2^k \langle {}_k^n \rangle =$	A VOCIDUU
	A 3 ⁿ	B 2 ⁿ	
	C 4 ⁿ	D 1 ⁿ	
6.	The next larger 4 -	- combination of the set {1,2,3,4	4.5.6} afte

A {1,2,3,4} B {1,3,4,5} C {1,3,5,6} D {1,2,3,5} 7. The sequence $\{a_n\}$ with is a solution of the recurrence relation. A $a_n = \alpha_1 r_1^{-n} + \alpha_2 r_2^{-n}$ B $a_n = \alpha_1 r_1^{-n} + \alpha_2 r_2^{n}$ C $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ D $a_n = \alpha_1 r_1^n + \alpha_2 r_2^{-n}$ 8. If f(n) = 5f(n/2)+3 and f(1) = 7. $f(2^k) = ?$ A $5^{k}\left(\frac{3}{4}\right) - \left(\frac{31}{4}\right)$ B $5^{k}\left(\frac{3}{4}\right) + \left(\frac{31}{4}\right)$ C $5^{k}\left(\frac{31}{4}\right) + \left(\frac{3}{4}\right)$ D $5^{k}\left(\frac{31}{4}\right) - \left(\frac{3}{4}\right)$ 9. The function f(x) = 1/(1-x) is the generating function of the sequence ____. sequence _____. A 0, 0, 0, 0, B 0, 1, 0, 1, C 1, 0, 1, 0, D 1, 1, 1, 1, 10. The value of 1.0 + (0 + 1) =_____. A 1 B -1 D ∞ C 0 11. is one of the Idempotent law. $A \quad x + x = 0 \qquad B \quad x + x = x$ C x+x=1 D x+x=-1 12. The product of literals corresponding to a black of all 1's in the k -map is called a/an A Product Implicant B C Minterms D Maxterms 13. A vocabulary V is a finite, non-empty set of elements called **B** Sentence A Symbols C String D None 14. The minimum state automation accepting a regular set L is unique up to an A Homomorphism **B** Isomorphism

C Mesomorphism D Heteromorphic 15. The halting problem is an decision problem. A Solvable B Unsolvable C Turing machine D Machine SECTION B $-(2 \times 5 = 10 \text{ marks})$ **ANSWER ANY TWO QUESTIONS** 16. Show that i) $7x^2$ is $O(x^3)$ ii) n^2 is not O(n)17. How many solutions does the equation $x_1 + x_2 + x_3 = 11$ have, where x_1 , x_2 , and x_3 are non-negative integers? 18. Find the explicit formula for the Fibonacci numbers. 19. i) Prove that the absorption law x(x+y) = x using other identities of Boolean algebra. ii) Find the sum of products expansion for the function $F(x, y, z) = (x + y)\overline{z}$ 20. Construct a non-deterministic finite-state automation that recognizes the language generated by the regular Grammer G = $\{V, T, S, P\}$, where $V = \{0, 1, A, S\}$, $T = \{0, 1\}$ and the productions in P are S \rightarrow 1 A, S \rightarrow 0, S \rightarrow λ , A \rightarrow 0A, A \rightarrow 1 A and A \rightarrow 1. SECTION C - (5 x 10 = 50 marks) **ANSWER ALL QUESTIONS** 21. A i) Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. ii) Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology. gradient to a brad of a driw grading v OR is not to test and in B i) Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order. ii) Give a big- O estimate for $f(x) = (x + 1) \log (x^2+1) + 3x^2$ 22. A i) If n is a positive integer and r is an integer with $1 \le r \le n$, then prove that there are P(n, r) = n(n-1)(n-2)....(n-r+1). ii) if n and r are integers with $0 \le r \le n$, then prove that $P(n,r) = \frac{n!}{(n-r)!}$ 3