B i) State and prove Binomial theorem.
ii) What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$?
23. A i) Solve the recurrence relation $a_{k}=3 a_{k-1}$ for $k=1,2,3 \ldots$ and the initial condition $\mathrm{a}_{0}=2$.
ii) Use generating functions to show that
$\sum_{k=0}^{n} C(n, k)^{2}=C(2 n, n)$ whenever n is a positive integer.
OR
B i) Find the generating functions for $(1+x)^{-n}$ and $(1-x)^{-n}$, where n is a positive integer using the extended Binomial theorem.
ii) Using generating functions to find an explicit formula for a_{n} where $a_{n}=8 a_{n-1}+10^{n-1}$ which satisfies the recurrence relation and the initial condition $a_{1}=9$.
24. A Use k -maps to minimize the sum of the products expansion i) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} \bar{z}$
ii) $x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$
iii) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

OR

B Use the Quine McCluskey method to simplify the sum - of products expansion
$w x y \bar{z}+w \bar{x} y z+w \bar{x} y \bar{z}+\bar{w} x y z+\bar{w} x \bar{y} z+\bar{w} \bar{x} y z+\bar{w} \bar{x} \bar{y} z$
25. A Find a regular expression that specifies each of these sets:
i) The set of bit strings with even length.
ii) The set of bit strings ending with a 0 and not containing 11
iii) The set of bit strings containing an odd number of 0 's

OR

B Show that the set $\left\{0^{n} 1^{n} / n=0,1,2 \ldots\right\}$ made up of all strings consisting of a block of 0's followed by a block of an equal number of 1 's is not regular.

Reg. No.

END SEMESTER EXAMINATION NOV/DEC-2023
First Semester
M.Sc MATHEMATICS

ELECTIVE - II DISCRETE MATHEMATICS

Time: Three Hours
Maximum: 75 marks

SECTION A - (15×1 = 15 marks)
 ANSWER ALL QUESTIONS

1. A \qquad is a declarative sentence that is either true or false but not both.
A Statement
B Logic
C Inference
D Proposition
2. The steps of an algorithm must be defined precisely, it is called
A Finiteness
B Effectiveness
C Definiteness
D Generality
3. The big - O symbol is sometimes called a
A Paul Symbol
B Landau Symbol
C Donald Symbol
D Knuth Symbol
4. How many different bit strings of length seven are there?
A 128
B 64
C 32
D 0
5. If n be a non-negative integer, then $\sum_{k=0}^{n} 2^{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=---$
A 3^{n}
B 2^{n}
C 4^{n}
D 1^{n}
6. The next larger 4 - combination of the set $\{1,2,3,4,5,6\}$ after $\{1,2,5,6\}$ is
A $\{1,2,3,4\}$
B $\{1,3,4,5\}$
C $\{1,3,5,6\}$
D $\{1,2,3,5\}$
7. The sequence $\left\{a_{n}\right\}$ with \qquad is a solution of the recurrence relation.
A $a_{n}=\alpha_{1} r_{1}^{-n}+\alpha_{2} r_{2}^{-n}$
$a_{n}=\alpha_{1} r_{1}^{-n}+\alpha_{2} r_{2}^{n}$
C $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \quad$ D
$a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{-n}$
8. If $f(n)=5 f(n / 2)+3$ and $f(1)=7 . f\left(2^{k}\right)=$?
A $5^{k}\left(\frac{3}{4}\right)-\left(\frac{31}{4}\right)$
$5^{k}\left(\frac{3}{4}\right)+\left(\frac{31}{4}\right)$
C $5^{k}\left(\frac{31}{4}\right)+\left(\frac{3}{4}\right)$
$5^{k}\left(\frac{31}{4}\right)-\left(\frac{3}{4}\right)$
9. The function $f(x)=1 /(1-x)$ is the generating function of the sequence \qquad —.
A $0,0,0,0, \ldots$
B $0,1,0,1, \ldots \ldots$
C $1,0,1,0$,
D $1,1,1,1, \ldots \ldots$
10. The value of $1.0+\overline{(0+1)}=$ \qquad .
A 1
B -1
C 0
D ∞
11. \qquad is one of the Idempotent law.
A $x+x=0$
B $x+x=x$
C $x+x=1$
D $x+x=-1$
12. The product of literals corresponding to a black of all 1 's in the k -map is called a/an
A Product
B Implicant
C Minterms
D Maxterms
13. A vocabulary V is a finite, non-empty set of elements called
A Symbols
B Sentence
C String
D None
14. The minimum state automation accepting a regular set L is unique up to an
A Homomorphism
B Isomorphism

C Mesomorphism

D
Heteromorphic
15. The halting problem is an \qquad decision problem.
A Solvable
B Unsolvable
C Turing machine
D Machine

SECTION B - ($\mathbf{2 \times 5} \mathbf{5} \mathbf{= 1 0}$ marks)

ANSWER ANY TWO QUESTIONS
16. Show that i) $7 x^{2}$ is $O\left(x^{3}\right)$ ii) n^{2} is not $O(n)$
17. How many solutions does the equation $x_{1}+x_{2}+x_{3}=11$ have, where x_{1}, x_{2}, and x_{3} are non-negative integers?
18. Find the explicit formula for the Fibonacci numbers.
19. i) Prove that the absorption law $x(x+y)=x$ using other identities of Boolean algebra.
ii) Find the sum of products expansion for the function
$F(x, y, z)=(x+y) \bar{z}$
20. Construct a non-deterministic finite-state automation that recognizes the language generated by the regular Grammer $G=$ $\{V, T, S, P)$, where $V=\{0,1, A, S\}, T=\{0,1\}$ and the productions in P are $S \rightarrow 1 A, S \rightarrow 0, S \rightarrow \lambda, A \rightarrow 0 A, A \rightarrow 1 A$ and $A \rightarrow 1$.

SECTION C-(5 x $10=50$ marks)

ANSWER ALL QUESTIONS

21. A i) Show that $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
ii) Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology.

OR
B i) Use the insertion sort to put the elements of the list 3,2, 4, 1, 5 in increasing order.
ii) Give a big- O estimate for $f(x)=(x+1) \log \left(x^{2}+1\right)+3 x^{2}$
22. A i) If n is a positive integer and r is an integer with $1 \leq r \leq n$, then prove that there are $P(n, r)=n(n-1)(n-2) \ldots .(n-r+1)$.
ii) if n and r are integers with $0 \leq r \leq n$, then prove that $P(n, r)=\frac{n!}{(n-r)!}$

