- B If ϕ_1, ϕ_2 are two solutions of L(y) = 0 on an interval I containing a point x_0 then prove that $W(\phi_1\phi_2)(x) = e^{-ax}(x-x_0)W(\phi_1,\phi_2)(x_0).$
- 22. A If ϕ be any solution of $L(y) = y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_n y = 0$ on an interval I containing a point x_0 prove that for all $x \in I$ $||\phi(x_0)||e^{-k|x-x_0|} \le ||\phi(x)|| \le ||\phi(x_0)||e^{k|x-x_0|}$ where $k = 1 + |a_1| + \cdots + |a_n|$

- B Solve y''' + y'' + y' + y = 1 which satisfies $\psi(0) = 0$, $\psi'(0) = 1, \psi''(0) = 0.$
- 23. A If one solution of $x^3y''' 3x^2y'' + 6xy' 6y = 0$ for x > 0 is $\phi_1(x) = x$. find the basis for the solution for x > 0.

- B Show that $\int_{-1}^{1} P_n(x) P_m(x) dx = 0, (n \neq m).$
- 24. A Find all solutions of the following equation for x > 0 $x^3y''' + 2x^2y'' - xy' + y = 0.$

- B Show that $x^{\frac{1}{2}}J_{\frac{1}{2}}x = \frac{\sqrt{2}}{\Gamma(\frac{1}{2})}\sin x$.
- 25. A Find the solution of $\phi(x)$ of the first order equation y' = xy, y(0) = 1 by finding successive approximation solution.

OR

B If M, N be two real valued function which have continuous first partial derivatives on some rectangle $R: |x - x_0| \le a, |y - y_0| \le b$ prove that the equation M(x,y) + N(x,y)y' = 0 is exact in R if and only if

Four Pages S. No. 70613

23PMAC03

Reg. No.	
----------	--

END SEMESTER EXAMINATION NOV/DEC-2023

First Semester M.Sc Mathematics

CORE - III ORDINARY DIFFERENTIAL EQUATIONS

Time: Three Hours

Maximum: 75 marks

SECTION A – $(15 \times 1 = 15 \text{ marks})$ **ANSWER ALL QUESTIONS**

1. If $y_1(x)$ and $y_2(x)$ are any two solutions of y'' + P(x)y' + Q(x)y = 0, then.

A
$$y_1(x) + y_2(x)$$

B
$$c_1 y_1(x) + y_2(x)$$

$$c c_1 y_1(x) + c_2 y_2(x)$$
 $d c c_1 y_1(x) + c_2 y_2(x)$

D
$$y_1(x) + c_2 y_2(x)$$

2. General solutions of first order homogeneous equation y' + P(x)y = 0.

A
$$v = e^{\int p dx}$$

B
$$v = e^{-\int p dx}$$

C
$$y = \int p dx$$

D
$$y = \log(\int p dx)$$

3. The solution of the initial value problem y'' + y = 0, y(0) = 0. y'(0) = 1.

A
$$\sin x + \cos x$$

B
$$\sin x + c_2 \cos x$$

$$c_1 \sin x + \cos x$$

$$D c_1 \sin x + c_2 \cos x$$

4. The form of the exact solution to $2\frac{dy}{dx} + 3y = e^{-x}$, y (0) = 5 is.

A A
$$e^{-1.5x}$$
 + B e^{-x} B A $e^{-1.5x}$ + B xe^{-x}

$$B A e^{-1.5x} + B x e^{-x}$$

C A
$$e^{1.5x}$$
 + B e^{-x}

D A
$$e^{1.5x}$$
 + B x e^{-x}

5. The n^{th} order ordinary linear homogeneous differential equations have.

C one singular solution

D none of these

6. If the Legendre's equation

$$(1-x^2)y'' - 2xy' + p(p+1)y = 0$$
, find $P(x) = ?$

C $\frac{1-x^2}{2x}$ DE DEIGNOW MOITAND $\frac{1-x^2}{2x^2}$ TELLINES GIVE

7. If the product $(x - x_0)P(x)$ and $(x - x_0)^2 Q(x)$ is analytic at $x = x_0$ then x_0 is said to be an y'' + P(x)y' + Q(x)y = 0.

A ordinary point

B singular point

C regular singular point D irregular singular point

8. If the Bessel's equation is $x^2y'' + xy' + (x^2 - p^2)y = 0$, then find P(x) = ?

Ax

9. The regular singular points for the differential equation

$$(1-x^2)y'' + y' + y = 0.$$

A x = 1 & x = -1 B x = 1 & x = 1

C x = 0 & x = -1 D x = 1 & x = 0

10. The solution of $y' = y^2$ with initial condition $\phi(1) = -1$.

Ax

 $B x^2$

C 1/x

D - 1/x

11. The homogeneous differential equation

M(x,y) dx + N(x,y) dy = 0 can be reduced to a differential equation, in which the variable is separated, by the substitution.

A y = v x

C x + y = v

D x - y = v van anoitsups

12. The integrating factor of the differential equation

 $\frac{dy}{dx}(x \log x) + y = 2 \log x$ is.

 $B \log x$

 $C \log(\log x)$

13. The general solution of $\frac{dx}{dt} = 2x$, $\frac{dy}{dt} = 3y$.

A $x = c_1 e^{2t} \& y = c_2 e^{3t}$ B $x = c_1 e^{-2t} \& y = c_2 e^{-3t}$

 $C x = c_1 e^t & y = c_1 e^{-t}$ $D x = c_1 e^{-3t} & y = c_2 e^{-2t}$

14. $y' = 3y^{\frac{2}{3}}$, y(0) = 0 does not satisfy Lipschitz condition

on____. A R: $|\mathbf{x}| \ge 1$, $|\mathbf{y}| \le 1$ B $|\mathbf{x}| \ge 1$, $c \ge \mathbf{y} \ge \mathbf{d}$ where 0>c>d

C R: $|x| \le 1$, $|y| \le 1$

D None of these

15. A solution of the differential equation $\frac{dy}{dx} = x + y$, y(0) = 1starting with $y_0(x) = 1$ use Picard's method, First approximation value =

$$A 1 - x$$

A 1 - xB $1 + x + \frac{x^2}{x^2}$

C
$$1-x+x^2-\frac{x^3}{3}+\frac{x^4}{4!}$$
 D $1-x+x^2$

SECTION B $-(2 \times 5 = 10 \text{ marks})$ **ANSWER ANY TWO QUESTIONS**

Define Wronskian.

17. Solve y''' - 3y' + 2y = 0.

18. Write the Legendre equation.

19. Define Euler equation.

20. Solve $y' = 3y^{2/3}$.

SECTION C – $(5 \times 10 = 50 \text{ marks})$ **ANSWER ALL QUESTIONS**

21. A Solve $y'' - y' - 2y = e^{-x}$.