22. A If two of the three integrals in $\int_a^c f \ d\alpha + \int_c^b f \ d\alpha = \int_a^b f \ d\alpha$ exists prove that the third integral also exists.

OR

- B If $\alpha \nearrow$ on [a, b] then prove that the following three statements are equivalent i) $f \in R(\alpha)$ on [a, b]ii) f satisfies Riemann's condition with respect to α on [a, b]iii) $I(f, \alpha) = \overline{I}(f, \alpha)$.
- 23. A If α be of bounded variation on [a, b] and assume that $f \in R(\alpha)$ on [a, b] then prove that $f \in R(\alpha)$ on every interval [c, d] of [a, b].

OR

- B State and prove Lebesgue's criterion for Riemannintegrability.
- 24. A If a series is convergent with sum S then prove that it is also (C, 1) summable with Cesaro sum S.

OR

- B State and prove Abel's limit theorem.
- 25. A If $f_n \rightarrow f$ uniformly on S and each f_n is continuous at a point c of S then prove that the limit function f is also continuous at c.

OR

B If $\lim_{n\to\infty} f_n = f$ on [a,b] and $g \in R$ on [a,b] define $h(x) = \int_a^x f(t)g(t)dt$, $h_n(x) = \int_a^x f_n(t)g(t)dt$ for $x \in [a,b]$ then prove that $h_n \to h$ uniformly on [a,b].

Four Pages S. No. 70612				23PMAC02
	Reg. No.		9112	and the second
END SEMESTER EXAMINATION NOV/DEC-2023				
First Semester				
M.Sc MATHEMATICS				
CORE – II REAL ANALYSIS –I				
Tim	e: Three Hours		Maxim	um: 75 marks
SECTION A - (15 x 1 = 15 marks)				
ANSWER ALL QUESTIONS				
1.	If the function ;	$f(x) = x^2$ is int	egrable on $[0, a]$	then
	$\int_0^a f(x) dx =$			
	A 0	В	а	
ţ.	C $\underline{a^3}$	D	a ²	
2.	3	$\left(\frac{x}{x}, x\neq\right)$	0	15 3
	The function $f($.	$x) = \begin{cases} x & x = 0 \\ 0 & x = 0 \end{cases}$	is discontinuou	s at
	A 1	(0, x = B	Y	
	C -1	D	2	
3.	$U(p, f, \alpha) =$	o cannot teo		
	A $\sum_{i=0}^{n} Mi \Delta c$	ri B	$\sum_{i=1}^{n} Mi \Delta \alpha i$	
			All of the above	
4.	If P* is a refinement of P, then L(P, f, α)- L(P*, f, α)			
	$A \geq 0$	В		A STATE
	$C < \frac{1}{2}$	D	$>\frac{1}{2}$	
6	n		n	

5. Let f:[0,1] \rightarrow R be defined by $f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{otherwise} \end{cases}$ then B f is not Riemann integrable A f is Riemann integrable C f is rectifiable D none of these 6. If $f \in R(\alpha) \& g \in R(\alpha)$ then fg is A Riemann integrable B Not Riemann integrable C rectifiable D none of these 7. If $\int_{a}^{b^{-}} f d\alpha = \int_{a^{-}}^{b} f d\alpha$ then f is called A Riemann integrable B partition D none of these C Refinement 8. P^* is the common refinement of two partitions P_1 and P_2 **A** $P^* = P_1 U P_2$ **B** $P = P_1 U P_2$ C $P = P_1^* U P_2$ D All of the above 9. If $S_{m,n} = \frac{m}{m+n}$, $\frac{m}{n} = 1$ to ∞ find $\lim_{n \to \infty} [\lim_{m \to \infty} S_{m,n}] =$ B -1 A 0 C 2 D 1 10. If $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ (x real, n=1,2,....). $\& f(x) = \lim_{n \to \infty} f_n(x)$ then f'(x) = ?B 0 A 1 C 00 D cannot be determined 11. $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ and $\int_{a}^{b} \frac{dx}{(x-b)^{n}}$ converges if B n>1 A n<1 C n=1 D n = 2 12. If $f_n(x) = \frac{1}{nx+1} (0 < x < 1, n = 1, 2, 3, ...)$ then $f_n(x) \to 0$ monotonically in B [0 1) A [0 1] 2

C (0 1) D R sentence (0 1) 13. If $f(x) = \begin{cases} x^{10} - 1, x \le 1 \\ x^2 - 1, x \ge 1 \end{cases}$ then f is discontinuous at x= B 2 A 1 D None of these C 3 14. If c is an isolated point of S then f is _____ at c A Connected B Continuous C Discontinuous D None of these 15. Any convergent sequence is a B bounded sequence A not bounded sequence C limit not unique D None of these SECTION B $-(2 \times 5 = 10 \text{ marks})$ **ANSWER ANY TWO QUESTIONS** 16. Define absolutely convergent. 17. State Euler's summation formula. 18. Define measure zero. 19. Define Cauchy product of series. 20. State Weierstrass M-test. SECTION C - (5 x 10 = 50 marks) **ANSWER ALL QUESTIONS** 21. A If f be a bounded variation on [a, b] and V be defined on [a,b], $V(x) = V_{f}(a, x)$ for $a < x \le b$, V(a) = 0 then prove that i) V is an increasing function on [a, b]ii) V - f is an increasing function on [a, b]. OR B State and prove Dirichlet's test.

3