22. A If two of the three integrals in $\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha=\int_{a}^{b} f d \alpha$ exists prove that the third integral also exists.

OR

B If $\alpha \overline{7}$ on $[a, b]$ then prove that the following three statements are equivalent i) $f \in R(\alpha)$ on $[a, b]$
ii) f satisfies Riemann's condition with respect to α on $[a, b]$
iii) $I(f, \alpha)=\bar{I}(f, \alpha)$.
23. A If α be of bounded variation on $[a, b]$ and assume that $f \in R(\alpha)$ on $[a, b]$ then prove that $f \in R(\alpha)$ on every interval $[c, d]$ of $[a, b]$.

OR

B State and prove Lebesgue's criterion for Riemannintegrability.
24. A If a series is convergent with sum S then prove that it is also $(C, 1)$ summable with Cesaro sum S.

OR
B State and prove Abel's limit theorem.
25. A If $f_{n} \rightarrow f$ uniformly on S and each f_{n} is continuous at a point c of S then prove that the limit function f is also continuous at c.

OR

B If $\lim _{n \rightarrow \infty} f_{n}=f$ on $[a, b]$ and $g \in R$ on $[a, b]$ define $h(x)=\int_{a}^{x} f(t) g(t) d t$,
$h_{n}(x)=\int_{a}^{x} f_{n}(l) y(l) d \ell$ for $x \in[a, b]$ then prove that $h_{n} \rightarrow h$ uniformly on $[a, b]$.

Reg. No.

END SEMESTER EXAMINATION NOV/DEC-2023

First Semester

M.Sc MATHEMATICS

CORE - II REAL ANALYSIS -I

Time: Three Hours
Maximum: 75 marks

SECTION A - (15×1 = $\mathbf{1 5}$ marks)

ANSWER ALL QUESTIONS

1. If the function $f(x)=x^{2}$ is integrable on $[0, a]$ then $\int_{0}^{a} f(x) d x=$
A 0
B a
C $\frac{a^{3}}{3}$
D a^{2}
2. The function $f(x)=\left\{\begin{array}{c}\frac{x}{|x|}, \\ 0, x=0\end{array}\right.$ is discontinuous at
A 1
B 0
C -1
D 2
3. $U(p, f, \alpha)=$
A $\sum_{i=0}^{n} M i \Delta \alpha i$
B $\quad \sum_{i=1}^{n} M i \Delta \alpha i$
C $\sum_{i=1}^{n} m i \Delta \alpha i$
D All of the above
4. If P^{*} is a refinement of P, then $\mathrm{L}(\mathrm{P}, f, \alpha)-\mathrm{L}\left(\mathrm{P}^{*}, f, \alpha\right)$
$A \geq 0$
B ≤ 0
C $<\frac{1}{n}$
D $>\frac{1}{n}$
5. Let $\mathrm{f}:[0,1] \rightarrow R$ be defined by $f(x)=\left\{\begin{array}{c}1 \text { if } x \in Q \\ 0, \text { otherwise }\end{array}\right.$ then
A f is Riemann integrable
C f is rectifiable
B f is not Riemann integrable
D none of these
6. If $\mathrm{f} \in R(\alpha) \& \mathrm{~g} \in R(\alpha)$ then fg is
A Riemann integrable
B Not Riemann integrable
C rectifiable
D none of these
7. If $\int_{a}^{b^{-}} f d \alpha=\int_{a^{-}}^{b} f d \alpha$ then f is called
A Riemann integrable
B partition
C Refinement
D none of these
8. $\quad P^{*}$ is the common refinement of two partitions P_{1} and P_{2}
A $P^{*}=P_{1} U P_{2}$
B $\quad P=P_{1} U P_{2}$
C $P=P_{1}^{*} U P_{2}$
D All of the above
9. If $S_{m, n}=\frac{m}{m+n}, m=1$ to $\infty=1$ to ∞ find $\lim _{n \rightarrow \infty}\left[\lim _{m \rightarrow \infty} S_{m, n}\right]=$
A 0
B -1
C 2
D 1
10. If $f_{n}(x)=\frac{\sin n x}{\sqrt{n}}(\mathbf{x}$ real $, \mathrm{n}=1,2, \ldots .$.$) .$
$\& f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ then $f^{\prime}(x)=$?
A 1
B 0
C ∞
D cannot be determined
11. $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ and $\int_{a}^{b} \frac{d x}{(x-b)^{n}}$ converges if
A $\mathrm{n}<1$
B $n>1$
C $\mathrm{n}=1$
D $n=2$
12. If $f_{n}(x)=\frac{1}{n x+1}(0<x<1, n=1,2,3, \ldots)$ then $f_{n}(x) \rightarrow 0$ monotonically in
A $\left[\begin{array}{ll}0 & 1\end{array}\right]$
B $\left[\begin{array}{ll}0 & 1\end{array}\right)$

C $\left(\begin{array}{ll}0 & 1\end{array}\right)$
D R
13. If $f(x)=\left\{\begin{array}{l}x^{10}-1, x \leq 1 \\ x^{2}-1, x>1\end{array}\right.$ then f is discontinuous at $\mathrm{x}=$
A 1
B 2
C 3
D None of these
14. If c is an isolated point of S then f is \qquad at c
A Connected
B Continuous
C Discontinuous
D None of these
15. Any convergent sequence is a \qquad .
A not bounded
B bounded sequence sequence
C limit not unique
D None of these

SECTION B - ($\mathbf{2 \times 5} \mathbf{5}=\mathbf{1 0}$ marks)
 ANSWER ANY TWO QUESTIONS

16. Define absolutely convergent.
17. State Euler's summation formula.
18. Define measure zero.
19. Define Cauchy product of series.
20. State Weierstrass M-test.

SECTION C - (5 x $\mathbf{1 0}=\mathbf{5 0}$ marks) ANSWER ALL QUESTIONS

21. A If f be a bounded variation on $[a, b]$ and V be defined on [a, b], $V(x)=V_{f}(a, x)$ for $a<x \leq b, V(a)=0$ then prove that
i) V is an increasing function on $[a, b]$
ii) $V-f$ is an increasing function on $[a, b]$.

OR
B State and prove Dirichlet's test.

