22. A Construct the truth table for the formula
$x=(P \rightarrow(Q \rightarrow R)) \rightarrow((P \rightarrow Q) \rightarrow(P \rightarrow R))$. OR
B Show that $(P \rightarrow R) \rightarrow((Q \rightarrow R) \rightarrow(P \vee Q \rightarrow R))$ is a tautology by using Quine's method.
23. A Solve the Fibonacci recurrence relation $F_{n}=F_{n+1}+F_{n-2}, F_{1}=F_{2}=1$.

OR

B i) How many different 9 - letter words can be coined from the letters of ALLAHABAD?
ii) Find the number of ways of choosing 15 currency notes from available Indian currency notes.
24. A Find the inverse of a matrix by using Cayley Hamilton

Theorem $\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 2\end{array}\right]$

OR

B Solve the following system of linear equations $x+2 y+2 z=-2,3 x+2 y+z=1$ and $x-2 y-5 z=1$.
25. A Explain the properties of Incidence matrices.

OR
B i) Define minimum and maximum degree of a graph g and give an example.
ii) State and Prove Whitney's Inequality.

Reg. No.

END SEMESTER EXAMINATION NOV/DEC - 2023

First Semester
 M.C.A
 CORE - I DISCRETE MATHEMATICS

Time: Three Hours
Maximum: 75 marks

SECTION A - (15×1 = 15 marks) ANSWER ALL QUESTIONS

1. If $m R n$ and $m^{2}=n$ then \qquad -
A $(-3,-9) \in R$
B $(3,-9) \in R$
C $(-3,9) \in R$
D $(3,9) \in R$
2. What is the number of relations from A to B with $|A|=m$ and $|B|=n$?
A mn
B 2^{n}
C 2^{m}
D $2^{m n}$
3. Which one is true for the set $\{(1,2),(2,1),(1,1),(2,2)\}$ is \qquad ?
A an equivalence B a partial ordering relation
C not an equivalence D not transitive relation -
4. $T \rightarrow P$ is a \qquad .
A Tautology
B Contradiction
C Contingency
D Disjunctive
5. Which is equivalent to $P \wedge(\neg P \vee Q)$?
A PVQ
B $P \wedge Q$

C P
D Q
6. What is the negation of "some students like cricket" ?
A Some students
B every student dislikes cricket dislike cricket
C every student likes cricket
D Some students like cricket
7. $C(5,2)$ is not equal to \qquad
A $C(5,3)$
B 10
C $5!/ 3!2!$
D 20
8. Find the number of permutation that can be formed from the letters of MASALA is \qquad _.
A $6!/ 3$!
B $6!/ 3!3!$
C $3!3$!
D 3 !
9. What is the value of d if $a_{n+1}-d a_{n}=0, a_{3}=189$ and $a_{5}=1701$?
A 9
B -3
C 3
D ± 3
10. What is the determinant of any identity matrix?
A 0
B 1
C 0 or 1
D any number
11. What is the commutative property of any two matrices A and B under addition?
A $A B=B A$
B $A+B=B+A$
C $A+B=-(A+B)$
D $A B=A+B$
12. What is the order of $A B$ if order of a matrix A is 2×3 and the order of a matrix B is 3×4 ?
A 3×3
B 2×3
C 2×4
D 3×4
13. A complete bipartite graph $K_{m, n}$ is a tree when \qquad -.
A $m=1, n=2$
B $m=2, n=2$
C $m=2, n=3$
D $m=3, n=0$
14. How many number of edges does complete graph K_{n} on n vertices?

$$
A n \quad \text { B } n-1
$$

C $\mathrm{n}(\mathrm{n}-1)$
D $\mathrm{n}(\mathrm{n}-1) / 2$
15. A simple graph with $n \geq 2$ vertices has a hamiltonian circuit if $\mathrm{d}(\mathrm{u})+\mathrm{d}(\mathrm{v}) \geq \mathrm{n}$ for all non adjacent vertices u, v in G is often called \qquad _.
A Dirac's Theorem
B Ore's Theorem
C Euler's Theorem
D Hamilton Theorem

SECTION B-(2 $\mathbf{5} \mathbf{5 = 1 0}$ marks) ANSWER ANY TWO QUESTIONS

16. Prove that the relation congruence modulo m defined in z^{+} by $a \equiv b(\bmod m)$ if $a-b$ is divisible by m is an equivalence relation on Z^{+}.
17. Show that $\exists x Q(x)$ is a valid conclusion from the premises $\forall x(P(x) \rightarrow Q(x))$ and $\exists x P(x)$.
18. Find a recurrence relations for the sequence $\left\{a_{n}\right\}$ given by $a_{n}=$ A. $2^{n}+$ B. $(-3)^{n}$.

19, Solve by Cramers rule $3 x+5 y=-1$ and $5 x+7 y=4$.
20. Prove that every tree is planar.

SECTION C- ($\mathbf{5 \times 1 0} \mathbf{= 5 0}$ marks) ANSWER ALL QUESTIONS

21. A i) Let R be a relation from A to B and S be a relation from B to C. Then prove that $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$
ii) If R, S, T are relation from A to B, B to C, C to D respectively then prove that $T o(S \circ R)=(T \circ S) \circ R$. OR
B Let $A=\{-1,1,2,3,4,5\}, B=\{1,2,4,6,8,9\}$ and $C=\{4,5,8,9,11,13\}$. Let R be a relation from A to B defined by $a R b$ if $a^{2}=b$ and $S b c$, a relation from B to C defined by $b S c$ if $c=b+3$. Find S o R, R^{-1} and S^{-1}.
